If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-24x+67=0
a = 2; b = -24; c = +67;
Δ = b2-4ac
Δ = -242-4·2·67
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{10}}{2*2}=\frac{24-2\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{10}}{2*2}=\frac{24+2\sqrt{10}}{4} $
| 21−3y=36−6y | | 9^x-2(3x)+1=0 | | 5(s+78)=5 | | 7m+8=57m= | | 4=8v-20 | | 2(y-4)=6×+2y | | 10=2(j-51) | | 1-(1/x^2)=0.8889 | | 4m+5=21m= | | 0.3x+(2x-1)=0.5x-4 | | 2(X+Y)=3y+10 | | 6y-5/2y=5/9 | | 43x+38/35=4x+2/3 | | 0.3x+2(2x-1)=0.5x-4 | | 85=3+x | | 2=7+u | | 3=w/3-9 | | 6n-10+50=90 | | y/4+13=35 | | 6n-10+50=180 | | 3x-10=22-5x | | 28=3y-17 | | 2x-2+3x-3+4x-4=1 | | 10x+6=3x+13 | | 10x+6=3x | | 3b^2-147=0 | | 16w+2w+3w−2w−12w=7 | | 4(d-83)=44 | | (k=7)^2+289 | | 2(z+7)=48 | | 0.00005x+0.0045=0.004x | | 11x-5x+3x+4x=18 |